Students and Teachers Forum

Given,         External radius of the spherical ball (R) = 7 cm         Volume of the ball (V) = 913.52 cm3. We know,        Volume of the hollow sphere (V) =43  π(R3 – .....

Given,        External radius of the spherical shell (R) = 8 cm        Internal radius of the spherical shell (r) = 6 cm. We know,        Volume of the spherical shell (V) = .....

Here,       Let the diameter of a sphere be d.       Radius of the sphere (r) = d2 Then,        volume of the sphere (V1) = 43 πr3                 .....

Given,         Volume of the sphere (V) = 4851 cm3 We know,         Volume of the sphere (V) = 43πr3 Or,   4851 cm3 = 43 ⨉ 227 ⨉ r3 Or,   4851 cm3 = .....

Given,        Radius of the vessel (R) = 12 cm        Radius of the metallic ball (r) = 6 cm. Now, Volume occupied by the metallic ball (v) = 43 πr3               .....

Given,         Height of the cylinder (h) = 42 cm         Radius of the hemisphere (r) = 3.5 cm. Here,        Volume of the object(V) = Volume of the cylinder + Volume of hemisphere   .....

Given,          Thickness of the hollow spherical ball (t) = 4 cm           Let the external and internal radius of the sphere be R and r.. Then,          R – r = 4 .....

Given,          Length of the pipe (h) = 63 m          Outer diameter (d1) = 6 cm          outer radius (r1) = 3 cm          Volume of the pipe (V) = .....

Given,          Volume of the cylinder (V) = 120 cm          Height (h) = 2 radius (r). We know,         Volume of the cylinder (V)     = πr2h   or, 169.71 .....

Let the external and internal radius of the ball be R and r respectively. Then,   According to the question,          Rr = 35 cm2  and          R + r= 12 cm.       .....

Given,             Length of the cylindrical pipe (h) = 6.3 m             Outer diameter of the pipe (d1) = 6 cm             Outer radius of the pipe (r1) .....

Given,          Volume of the sphere (V) = 523.80 cm3          Let r be the radius of sphere. We know,         Volume of sphere (V) = 43 πr3 Or,   523.80 .....

Given,          Length of the cylinder (h) = 9 cm          Diameter of the cylinder (d) = 4 cm          Radius of the cylinder (r) = 2 cm. Since the hemispheres are at .....

Given;         Length of the cuboid (l) = 15 cm         Breadth of the cuboid (b)= 13 cm             Height of the cuboid (h) = 4 cm We know,  Total surface area of .....

Given,         Curved surface area of the hemisphere (CSA) = 2722 cm2         Let r be the radius of hemi-sphere. We .....

Given,        Length of the iron pipe (h) = 12 cm         Internal radius of the iron pipe (r2) = 3 cm        Thickness of the iron pipe (t) = 1 cm.        Then, .....

Let r be the radius of sphere. Given,           Total surface area of each hemispherical object (TSA) = 462 cm2    Or, 3πr2    = 462 cm2    Or,  πr2    = .....

Given,         Surface area of sphere made of earth (TSA) = 616 cm2         Let r be the radius of sphere. We know,        Surface area of sphere (TSA) = 4πr2 Or, 616 cm2   .....

Given,        Diameter of the cylindrical well (d) = 7 m       radius of the cylindrical well (r) = d2  = 3.5 m       Depth of the cylindrical well (h) = 20 m. We know, Volume of the .....

Here,       The circumference of base (C) = 44 cm       Sum of radius and slant height (r+l) =32 cm Now, Total surface area of the cone is given by,      TSA = πr( r + l)         .....

Let,      Height of the cylindrical wood = h      Radius of the cylindrical wood = r Then,       According to the question, r = h       Curved surface area (CSA) = 308 cm2     .....

Given,        External radius of the spherical ball (R) = 7 cm        Internal radius of the spherical ball (r) = 3.5 cm. We know,        Volume of the iron contained in spherical shell .....

Given,          Diameter of the hemisphere (d) = 14 cm          Radius of the hemisphere (r) = 7 cm          Height of the vessel (h) = 13 cm. Now,       .....

Given,         Length of the cylinder (h) = 35 cm         Radius of the spherical ends (r) = 10.5 cm. Now,         Volume of the object (V)  = Volume of the cylinder + Volume of two .....

Let r be the radius  and l be the slant height. Then, According to the question, r + l = 37cm And, Total surface area of cone = 814 cm2 Or, πr (r+l) = 814 Or, 22 ⨉ r ⨉ 377 = 814 ∴r = 814×7 / .....

Here,       Diameter (d) = 24 cm  So, radius(r)  = 12 cm Also,       total surface area of cone = 300π cm2 Or, πr(r+l) = 300π Or, 12 (12+l) = 300 Or, 12 + l = 25 Or, l = 25-12 Or, l = 13 .....

Let r be the radius and h be the height of the cone. According to the question,       24r = 7h    ∴r = 724 h And, the volume of the cone = 3163 cm3 Or, 13πr2h = 3163 Or, 13π(7h24)2h = 3163 Or, .....

Here, Let d be the diameter of cone. Volume of the cone = 23100 cm3 Or, 112πd2h = 23100 Or,  112πd2×50 = 23100 Or,   d2 = (23100 X 12/50π) Or, d2 =  1764 Or, d = 42 cm Hence, the diameter of the base of .....

Let, r and h be the radius of the base of cylinder and height of the cylinder respectively. According to question,          Sum of radius and height = 35 cm    Or, r + h = 35     ∴   r = .....

Here,        circumference of base of the cylinder = 22 m Or, 2πr = 22m                      [ r = radius of base.] Or, 2×227×r=22 ∴ r = 3.5 m Height .....

Here, The radius of the hemisphere = radius of base of cylinder (r) = 14 cm The height of the cylinder (h) = 3r = 3×14 = 42 cm Now,     volume of the solid object = volume of two hemisphere + volume of the cylinder   .....

Here,     slant height (l) = 25 cm     height (h) = 24 cm Now, radius (r) =l2-h2                =252-242                 = 7 .....

Here,         height of the cylinder (h) = 80 cm         radius of hemisphere = the radius of the cylinder = r (say)        volume of the solid = 111804 cm3 Or, volume of the hemisphere + .....

Given,          Surface area of the sphere (TSA) = 16π cm2 We know,          Surface area of the sphere (TSA) = 4πr2 Or,    16π cm2 = 4π ⨉ r2 Or,    r2 = .....

Given,          Radius of the hemisphere (r) = 14 cm. We know, Surface area of the hemisphere (TSA) = 3πr2               = 3 ⨉ 3.14 ⨉142 cm2           .....

Here, Height of cylinder = 3 cm Area of base = 100 cm2 We know, Volume of cylinder = Base Area ⨉ height                                 = 100 ⨉ 3 cm3     .....

Given,    Height (h) = 8 cm    Bases, b1 = 6 cm  & b2 = 7 cm    Area = ? We have, Area of the trapezium    = 12 h (b1 + b2)                 .....

Here, Let, the base and the perpendicular of the right-angled triangular land be "a". Then, a = 10 cm Now, Area of the right-angled triangle is given by, Area = 12 ⨉ p ⨉ b          = 12 ⨉ a ⨉ .....

Let, a, b and c be the three sides of the triangle. Given ,       a = 8 cm        b = 12 cm And,       P =  a + b + c = 36 cm Or, c = P - ( a+b)         = 36 - (8 + .....

Solution: Let a, b and c are the lengths of 3 sides of triangular land.. Here,         a + b + c = 84 m And, c = 26 m Hence, a + b + 26 cm = 84 m Or, a + b = 58 m……….1). We have, s = (a + b + c)/2 = .....

Given, AB (c) = 10 cm    BC (a) = 24 cm and  AC (b) = 30 cm Now, Semi-perimeter of ∆ABC (s) = 12 (a + b + c)                                 .....

Let a, b and c are the lengths of 3 sides of triangle. Here,          a + b + c = 18 m And, c = 4 m Hence, a + b + 4m = 18 m Or,   a + b = 14 m……….(1) We have, Semi-perimeter (s) = 12(a + b + .....

Here,       Let, a be the side of equilateral triangle.       Area of an equilateral triangular land = 9003 m2 Using formula,      34a2 = 9003 m2 Or, a2 = 900 ⨉ 4 m2 Or, a = 900⨉4 .....

Here,        a = 5cm,        b = 13cm and        c = 12cm Now, semi-perimeter (s) = 12 (a + b + c)                         .....

Here,        Let a be the length of sides of the equilateral triangle, Given,       Area of an equilateral triangle = 163 cm2 Or, 34a2 =163cm2 Or, a2=16 ⨉ 4 Or, a =16 ⨉ 4       .....

Let,   a = 5 cm,   b = 13 cm   and c = 12 cm Now, s = 12 (a + b + c)    = 12 (5 + 13 + 12) cm    = 15 cm The area of the ∆ABC is given by,      Area = .....

Here, In right angled triangle ADC, DC = √(AC2 - AD2)        = √(5.32 - 52)        = 1.76 cm Area of triangle ADC = 12 ⨉ AD ⨉ CD           .....

Let a be the side of the given equilateral triangle. We have,         Area of equilateral triangle = √34 a2     Or, 9√3 = √34a2     Or, a2 = 36 cm2     .....

We have given,       Base (b) = 6cm       Height (h) = 8cm       Area = ? We know,     Area of the parallelogram= b×h                     .....

Given,        Base (b) = CA = 3cm        Perpendicular (p) = BC = 4cm.       [ Since , longest side of a right-angled triangle is hypoteneous = 5cm.] We have, Area of right angle triangle .....